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Thermalization is a ubiquitous process of statistical physics, in which fine details of few-body
observables are washed out in favor of a featureless steady state. Even in isolated quantum many-
body systems, limited to reversible dynamics, thermalization typically prevails [1]. However, in
these systems there is another possibility: many-body localization (MBL) can result in preservation
of a non-thermal state [2, 3]. While disorder has long been thought to be an essential ingredient for
this phenomenon, recent theoretical work has suggested that a quantum many-body system with a
uniformly increasing field—but no disorder—can also exhibit MBL [4], resulting in ‘Stark MBL’ [5].
Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties:
halting of thermalization and slow propagation of correlations. Tailoring the interactions between
trapped ion spins in an effective field gradient, we directly observe their microscopic equilibration for
a variety of initial states, and we apply single-site control to measure correlations between separate
regions of the spin chain. Further, by engineering a varying field gradient, we create a disorder-free
system with coexisting long-lived thermalized and nonthermal regions. The results demonstrate
the unexpected generality of MBL, with implications about the fundamental conditions needed for
thermalization and potential uses in engineering long-lived non-equilibrium quantum matter.

MAIN7

Many-body localization was first formulated as a gen-8

eralization of the non-interacting Anderson transition [6–9

8]. With disorder, quantum particles can experience de-10

structive interference through multiple scattering, caus-11

ing a transition to exponentially localized wavepackets.12

Over time, a cohesive picture of MBL in interacting sys-13

tems has also developed [9, 10]. In this description, the14

MBL regime has extensive local conserved quantities that15

generalize the particle occupancies in Anderson local-16

ization. However, interactions result in additional slow17

spreading of correlations via entanglement. Strikingly,18

MBL creates a phase of matter that is non-ergodic: for19

a range of parameters, local features of the initial state20

are preserved for all times, preventing thermalization.21

In considering MBL, the question almost immediately22

arose as to whether random disorder was a requirement.23

A partial solution has long been known: MBL is possi-24

ble with incommensurate periodic potentials [11]. How-25

ever, the question of whether an MBL phase might exist26

which preserves translational symmetry, for instance in27

a system with gauge invariance [12] or multiple particle28

species [13, 14], has continued to generate extensive dis-29

cussion [15]. Recently, this question has been approached30

from a different starting point: the Bloch oscillations31

and Wannier-Stark localization of non-interacting par-32

ticles in a uniformly tilted lattice [16]. From this, it has33

been predicted that interacting systems with a strong lin-34

ear tilt can also exhibit MBL-like behavior [4, 5]. This35

effect, sometimes called Stark MBL, has attracted con-36

siderable theoretical and experimental interest [17–24].37
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However, clear experimental realization of Stark MBL38

has been complicated by approximate Hilbert space shat-39

tering that occurs in the limit of short-range interactions40

[4, 5, 23]. The setting of a trapped-ion quantum simula-41

tor naturally overcomes this complication.42

EXPERIMENTAL SETUP43

Investigation of many-body localization has been44

driven in part by the development of isolated quantum45

simulator platforms with site-resolved probing and de-46

tection [25–28]. Our experimental apparatus (Fig. 1a)47

exemplifies these capabilities. It consists of a chain (N =48

15–25) of 171Yb+ ions, with pseudospin states |↑z⟩ and49

|↓z⟩ encoded in two hyperfine ground-state levels. The50

Hamiltonian has two ingredients. The first is an over-51

all spin-spin interaction, mediated by global laser beams52

coupling spin and motion using the Mølmer-Sørensen53

scheme [29]. The second, a tightly-focused beam creat-54

ing a programmable effective Bz magnetic field at each55

ion using the AC Stark effect [30]. A key feature of this56

platform is its high degree of controllability. In addi-57

tion to turning on or off either Hamiltonian term, we use58

the tightly-focused beam to initialize spins in any desired59

product state, and we measure arbitrary local observ-60

ables with state-dependent fluorescence collected onto a61

CCD.62

Combining the global spin-spin interactions with a pro-63

grammable local field set to a linear gradient results in64

the tilted long-range Ising Hamiltonian:65

H =
∑
j<j′

Jjj′σ
x
j σ

x
j′ +

N∑
j=1

(Bz0 + (j − 1)g)σz
j . (1)
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FIG. 1. Experimental setup. a, Each trapped ion in a chain of length N encodes a pseudospin. Global lasers controllably
mediate a long-range spin-spin interaction (red), which is parameterized by the nearest-neighbor rate J0. A tightly-focused
beam provides a site-resolved effective Bz magnetic field (blue), which we use to engineer a field gradient with slope g. b,
The parameter hri, a measure of the level statistics of the experimental Hamiltonian (N = 15), shows a progression from
statistics near the Wigner-Dyson limit (hriW D, red dotted line) at low g=J0, characteristic of a generic ergodic system, to
Poisson statistics (hriP , blue dotted line) at high g=J0, characteristic of a localized system. c, We probe the system using a
quench from a non-equilibrium initial state, such as the Néel state shown here. At low g=J0 an initial spin pattern will quickly
relax to a uniform average magnetization, while at high g=J0 the initial pattern persists. The former is consistent with a
thermal state, in which uniformity is combined with correlations reaching across the entire chain, while the latter is consistent
with many-body localization, in which the magnetization remains non-uniform and correlations spread slowly.

Here we have the long-range spin-spin interactions Jjj′ ,66

which approximately follow a power-law: Jjj′ ≈ J0/|j −67

j′|α with J0 the nearest-neighbor coupling and α = 1.3.68

Bz0 is an overall bias field, and g the gradient strength,69

with {J0, Bz0, g} > 0. In practice we apply the terms in70

this Hamiltonian sequentially in time, using a Trotteriza-71

tion scheme that reduces decoherence while still resulting72

to a very good approximation in evolution according to73

the Hamiltonian Eq. 1 (see Methods). The bias field Bz074

is set to be large (Bz0/J0 > 5), so that the total magne-75

tization
∑

j⟨σz
j ⟩ is approximately conserved. With this76

constraint, and neglecting edge effects, Jjj′ = J|j−j′| and77

this Hamiltonian is translationally invariant: the opera-78

tion j → j + n for integer n is equivalent to a shift in79

Bz0, which has no effect in the bulk. For an initial state80

of definite total magnetization, this model can then be81

mapped to a chain of hard-core bosons with long-range82

hopping in a tilted lattice (see Methods), indicating that83

it has similar ingredients to models previously shown to84

realize Stark MBL [4, 5].85

A useful numeric diagnostic of whether a model ex-86

hibits an MBL regime can be found in the level statistics,87

which feature similar behavior in regular MBL [31] and88

Stark MBL [4, 5]. A generic ergodic system has energy89

levels following the Wigner-Dyson distribution that char-90

acterizes random matrices, while a generic many-body91

localized system has a Poissonian level distribution [31].92

This difference can be quantified by the average ratio of93

adjacent energy level gaps, defined as94

⟨r⟩ = 1

n

∑
n

min(En+1 − En, En − En−1)

max(En+1 − En, En − En−1)
. (2)

⟨r⟩ varies from 0.53 for the Wigner-Dyson case to 0.39 for95

the Poissonian case [4, 5, 31]. Diagonalizing the Hamil-96

tonian (Eq. 1) for N = 15, we find that ⟨r⟩ changes97

from being near the Wigner-Dyson limit to the Poisso-98

nian limit as the gradient g/J0 is increased (Fig. 1b).99

While Fig. 1 shows the exact experimental Hamiltonian,100

including deviations from power-law interactions near the101

edges of the chain, this behavior persists for the corre-102

sponding power-law Hamiltonian (see Methods). Unlike103

the first studies of Stark MBL, which required a small104

amount of disorder or curvature to create an MBL-like105

state with generic Poissonian level statistics [4, 5], Eq. 1106

exhibits these properties without any terms perturbing107

the translational symmetry.108

We probe the localization using a quench procedure,109

shown schematically in Fig. 1c. The initial state, such110

as a Néel state of staggered up and down spins, is highly111

excited and far-from-equilibrium. If it thermalizes, it will112

result in a high-temperature equilibrium in which each113

spin has nearly equal probabilities of being up or down.114

Many-body localization will instead result in persisting115

memory of the initial order, breaking ergodicity.116

ERGODICITY BREAKING IN STARK MBL117

Performing the quench experiment, we see the ex-118

pected signature of localization: a low gradient results119

in quick equilibration of the spins (Fig. 2a), while in a120

strong gradient they are nearly unchanged from their ini-121

tial values (Fig. 2b). The experimental data correspond122

closely to exact numerics for the system evolution.123

To quantify the amount of initial state memory as the124

gradient is increased, it is useful to define a measure that125

can serve as an effective order parameter. We choose a126

generalized imbalance, I(t), which reflects the preserva-127

tion of the local magnetizations of the initial state. This128

observable is similar to other previously used measures129

of initial state memory, such as the imbalance [32] or the130

Hamming distance [25], but is advantageous for compar-131




